Виды компьютерной графики. Основы компьютерной графики Основные понятия и виды компьютерной графики

Основные понятия компьютерной графики.

Основные понятия по теме

Общая характеристика и функциональные возможности графического редактора Photoshop

Общая характеристика и функциональные возможности графического редактора Corel DRAW

Графические форматы данных

Компьютерная графика, ее классификация, основные понятия

Тема 5 Технологии и системы обработки графической информации

Цифровым принято называть изображение, созданное с использованием компьютерной программы с нуля; либо изображение (слайд, фотография), преобразованное в электронную информацию для того, чтобы просматривать, редактировать и управлять им на экране компьютера.

Устройства, преобразующие графические изображения в цифровую форму, называются оцифровывающими (сканеры, цифровые фотоаппараты)

Цветовая модель - ϶ᴛᴏ средство описания цветов с целью их дальнейшего последовательного воссоздания.

Различают три вида компьютерной графики: растровая графика , векторная графика и фрактальная графика . Οʜᴎ отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют отсканированные иллюстрации, подготовленные художником на бумаге, или фотографии. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку.

векторной графикой предназначены, в первую очередь, для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики намного проще.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику часто используют в развлекательных программах.

Разрешение изображения и его размер. В компьютерной графике следует четко различать: разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

Разрешение экрана - это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселях и определяет размер изображения, ĸᴏᴛᴏᴩᴏᴇ может поместиться на экране целиком.

Разрешение принтера - это свойство принтера, выражающее количество отдельных точек, которые бывают напечатаны на участке единичной длины. Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

Разрешение изображения - это свойство самого изображения. Оно тоже измеряется в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения - его физическим размером.

Физический размер изображения может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом. В случае если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает.


  • - ОСНОВНЫЕ ПОНЯТИЯ КОМПЬЮТЕРНОЙ ГРАФИКИ

    Векторная графика. В отличие от растровой графики, в которой основным элементом изображения является точка, в векторной графике базовым элементом является линия (при этом не важно, прямая это линия или кривая). Разумеется, в растровой графике тоже существуют линии, но... [читать подробенее]


  • -

    2. Государства - участники принимают любые эффективные и необходимые меры с целью упразднения традиционной практики, отрицательно влияющей на здоровье детей. 4. Государства – участники обязуются поощрять международное сотрудничество и развивать его с целью...

    Введение

    Актуальность. Тема про компьютерную графику и спецэффекты еще не раскрыта до конца и поэтому так популярна и увлекательна. В большинстве современных фильмов используется множество спецэффектов. Именно они придают видео такую красочность и реальность. Применение компьютерной техники в современной жизни стало незаменимым. Огромное количество отраслей используют вычислительные машины для ускорения решения задач. До недавнего времени вся компьютерная техника была лишь вспомогательным устройством для человека. Компьютер проводил различные вычисления, а основная работа лежала всё равно на человеке. Перед человечеством же стояли задачи масштабных строительств, проектов на будущее, испытаний, которых компьютер решить не мог. С появлением мощных графических станций, а так же компьютеров, способных решать не только математические задачи, но и визуализировать сложнейшие технологические процессы на экране, начинается новая эра в компьютерной промышленности.

    Цель - изучить понятие компьютерной графики и спецэффектов, рассмотреть их виды, применения.

    Объект - история создания спецэффектов и широкое их использование в современном мире методом создания новейших компьютерных технологий.

    Предмет - компьютерная графика и один из ее видов - спецэффект.

    1. Проанализировать литературы про спецэффекты и компьютерную графику.

    2. Исследовать компьютерную графику на протяжении всего развития.

    3. Рассмотреть развитие спецэффектов от начала их формирования и до наших дней.

    4. Показать на практике использование компьютерной графики и спецэффектов.

    Гипотеза: Существует ли граница в создании спецэффектов и развитии компьютерной графики?

    Что такое компьютерная графика и ее виды

    Понятие и виды компьютерной графики

    Компьютерная графика - это область информатики, занимающаяся проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере.

    Работа с компьютерной графикой - одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не только профессиональные художники и дизайнеры. На любом предприятии время от времени возникает необходимость в подаче рекламных объявлений в газеты и журналы, в выпуске рекламной листовки или буклета. Иногда предприятия заказывают такую работу специальным дизайнерским бюро или рекламным агентствам, но часто обходятся собственными силами и доступными программными средствами.

    Без компьютерной графики не обходится ни одна современная программа. Работа над графикой занимает до 90% рабочего времени коллективов, выпускающих программы массового применения.

    Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.

    В зависимости от способа формирования изображений компьютерную графику подразделяют на несколько видов:

    Растровая графика

    Растровое изображение представляет собой сетку пикселей или цветных точек (обычно прямоугольную) на компьютерном мониторе, бумаге и других отображающих устройствах и материалах (растр). Важными характеристиками изображения являются:

    количество пикселей -- размер. Может указываться отдельно количество пикселей по ширине и высоте или же (редко) общее количество пикселей (часто измеряется в мегапикселях); количество используемых цветов или глубина цвета;

    цветовое пространство (цветовая модель). Например - RBG;

    разрешение -- справочная величина, говорящая о рекомендуемом размере пикселя изображения.

    Наименьшим элементом является точка.

    Векторная графика

    Векторная графика -- способ представления объектов и изображений в компьютерной графике, основанный на использовании геометрических примитивов, таких как точки, линии, многоугольники и др. Термин используется в противоположность к растровой графике.

    линия.

    Преимущества векторного способа описания графики над растровой графикой:

    Размер, занимаемой описательной частью, не зависит от реальной величины объекта, что позволяет, используя минимальное количество информации, описать сколько угодно большой объект файлом минимального размера.

    В связи с тем, что информация об объекте хранится в описательной форме, можно бесконечно увеличить графический примитив, например, дугу окружности, и она останется гладкой.

    Параметры объектов хранятся и могут быть легко изменены.

    Также это означает что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшает качества рисунка.

    При увеличении или уменьшении объектов толщина линий может быть задана постоянной величиной, независимо от реального контура.

    Недостатки векторной графики

    Не каждый объект может быть легко изображен в векторном виде -- для подобного оригинальному изображению может потребоваться очень большое количество объектов и их сложности, что негативно влияет на количество памяти, занимаемой изображением, и на время для его отображения.

    Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет -- трассировка растра, притом, что требует значительных вычислительных мощностей и времени, не всегда обеспечивает высокое качество векторного рисунка.

    Преимущество векторной картинки -- масштабируемость -- пропадает, когда начинаем иметь дело с особо малыми разрешениями графики. Чтобы не было «грязи», картинку под такие разрешения приходится подгонять вручную.

    Трехмерная графика

    Трёхмерная графика -- раздел компьютерной графики, совокупность приемов и инструментов, предназначенных для изображения объёмных объектов. Больше всего применяется для создания изображений на плоскости экрана или листа печатной продукции в архитектурной визуализации, кинематографе, телевидении, компьютерных играх, печатной продукции, а также в науке и промышленности.

    Трёхмерное изображение на плоскости отличается от двумерного тем, что включает построение геометрической проекции трёхмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ. При этом модель может, как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырёхмерного фрактала).

    Наименьшим элементом является плоскость.

    Фрактальная графика

    От слова фрактал -- это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими-либо из перечисленных ниже свойств:

    Увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

    Является самоподобной или приближённо самоподобной.

    Обладает дробной размерностью.

    Наименьшим элементом является треугольник.

    Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система человека или животных.

    Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

    Первые примеры фрактальной графики с необычными свойствами появились в XIX веке. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

    Символьная графика устарела и на сегодняшний день практически не используется.

    Компьютерная графика (так же машинная графика ) - область деятельности, в которой компьютеры наряду со специальным программным обеспечением используются в качестве инструмента, как для создания (синтеза) и редактирования изображений, так и для оцифровки визуальной информации, полученной из реального мира с целью дальнейшей её обработки и хранения.

    Первые вычислительные машины не имели отдельных средств для работы с графикой, однако уже использовались для получения и обработки изображений. Программируя память первых электронных машин, построенную на основе матрицы ламп, можно было получать узоры.

    В 1950 году в военном компьютере Whirlwind-I (рус. Вихрь), встроенный в систему SAGE противовоздушной обороны США, впервые был применён монитор - как средство отображения визуальной и графической информации.

    В 1957 году Рассел Кирш создал первый сканер для компьютера и получил на нём первое цифровое изображение - маленького сына Владлена.

    В 1961 году программист С. Рассел возглавил проект по созданию первой компьютерной игры с графикой. Создание игры («Spacewar!») заняло около 200 человеко-часов. Игра была создана на машине PDP-1.

    В 1963 году американский учёный Айвен Сазерленд создал программно-аппаратный комплекс Sketchpad, который позволял рисовать точки, линии и окружности на трубке цифровым пером. Поддерживались базовые действия с примитивами: перемещение, копирование и др. По сути, это был первый векторный редактор, реализованный на компьютере.

    В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертёжную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

    В 1964 году Эдвард Зейджек создал первую компьютерную анимацию - движение спутника вокруг земли.

    В 1968 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4, выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка», который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

    В 1968 году существенный прогресс компьютерная графика испытала с появлением возможности запоминать изображения и выводить их на компьютерном дисплее, электронно-лучевой трубке.

    Основные области применения

    Научная графика - первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства - графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

    Деловая графика - область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчётная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы.

    Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трёхмерные изображения.

    Иллюстративная графика - это произвольное рисование и черчение на экране компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.

    Художественная и рекламная графика - ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и «движущихся картинок». Получение рисунков трёхмерных объектов, их повороты, приближения, удаления, деформации связано с большим объёмом вычислений. Передача освещённости объекта в зависимости от положения источника света, от расположения теней, от фактуры поверхности, требует расчётов, учитывающих законы оптики.

    Компьютерная анимация - это получение движущихся изображений на экране дисплея. Художник создает на экране рисунки начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчёты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определённой частотой, создают иллюзию движения.

    Мультимедиа - это объединение высококачественного изображения на экране компьютера со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.

    Научная работа . Компьютерная графика является также одной из областей научной деятельности. В области компьютерной графики защищаются диссертации, а также проводятся различные конференции

    Двумерная (2D - от англ. two dimensions - «два измерения») компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую.

    Векторная графика

    • Векторная графика представляет изображение как набор геометрических примитивов. Обычно в качестве них выбираются точки, прямые, окружности, прямоугольники, а также кривые некоторого порядка. Объектам присваиваются некоторые атрибуты, например, толщина линий, цвет заполнения. Рисунок хранится как набор координат, векторов и других чисел, характеризующих набор примитивов.
      Изображение в векторном формате даёт простор для редактирования: оно может без потерь масштабироваться, поворачиваться, деформироваться; также имитация трёхмерности в векторной графике проще, чем в растровой.
      Такой способ представления хорош для схем, используется для масштабируемых шрифтов, деловой графики, очень широко используется для создания мультфильмов и просто роликов разного содержания.
    • Растровая графика всегда оперирует двумерным массивом (матрицей) пикселей. Каждому пикселю сопоставляется значение яркости, цвета, прозрачности - или комбинация этих значений. Растровый образ имеет некоторое число строк и столбцов.
      В растровом виде представимо любое изображение, однако этот способ хранения имеет свои недостатки: больший объём памяти, необходимый для работы с изображениями, потери при редактировании.

    Растровая графика

    Фрактальная графика

    Фрактальная графика основана на использовании фракталов - объектов, отдельные элементы которых наследуют свойства родительских структур. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями.

    Трёхмерная графика (3D - от англ. three dimensions - «три измерения») оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.

    Трехмерная графика бывает полигональной и воксельной . Воксельная графика аналогична растровой. Объект состоит из набора трехмерных фигур, чаще всего кубов. А в полигональной компьютерной графике все объекты обычно представляются как набор поверхностей, минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.

    CGI (англ. computer-generated imagery , букв. «изображения, сгенерированные компьютером») - неподвижные и движущиеся изображения, сгенерированные при помощи трёхмерной компьютерной графики и использующиеся в изобразительном искусстве, печати, кинематографических спецэффектах, на телевидении и в симуляторах.

    Созданием движущихся изображений занимается компьютерная анимация, представляющая собой более узкую область графики CGI, применимую, в том числе в кинематографе, где позволяет создавать эффекты, которые невозможно получить при помощи традиционного грима и аниматроники. Компьютерная анимация может заменить работу каскадёров и статистов, а также декорации.

    Введение

    1. Пиксели, разрешение, размер изображения

    2. Типы изображений

    3. Форматы файлов

    4. Цвет и его модели

    Заключение

    Список литературы


    Введение

    Компьютерная графика имеет дело с изображениями. Ее основное назначение визуализация построение изображения графического объекта по его описанию (прикладной модели). Другими видами обработки графической информации являются преобразование изображений и распознавание изображений.

    В зависимости от области применения к визуализации предъявляются различные требования: скорость построения, качество изображения, реалистичность, эстетические характеристики, достоверность и другие, которые должны учитываться графической программой .

    Изображение строится на основе прикладной модели, являющейся внутренним (программным) представлением графического объекта, задаваемого в пространстве той или иной размерности. Для его лучшего рассмотрения производятся видовые преобразования объекта, позволяющие смотреть на него с требуемой точки зрения.

    Обычно объект задается в трехмерном пространстве, а его изображение двумерно. Для перехода от трехмерного пространства к двумерному изображению используются проекции. Экранные изображения, как правило, являются проекциями объектов.

    Компьютерная графика существует уже длительное время, за которое было создано большое число разнообразных графических программ.

    Цель реферата – рассмотреть основные понятия компьютерной графики.


    1. Пиксели, разрешение, размер изображения

    Изображение на экране состоит из маленьких ячеек. Каждая из них может иметь определенный цвет. Такая ячейка получила название пикселя (pixel). Совокупность пикселов составляет матрицу и образует изображение на экране. В зависимости от модели монитора параметры матрицы в пикселях могут изменяться: 640х480, 800х600, 1024х768, 1600х1200...

    Величина матрицы не влияет на физический размер экрана и не зависит от него. Чем больше матрица на одном и том же экране, тем размер ячейки меньше, а, стало быть, качество изображения лучше.

    Следует четко различать:

    · разрешение экрана

    · разрешение печатающего устройства

    Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны, пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

    Разрешение экрана - это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселях и определяет размер изображения, которое может поместиться на экране целиком.

    Разрешение принтера - это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

    Разрешение изображения - это свойство самого изображения. Оно тоже измеряется в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения - его физическим размером.

    Физический размер изображения может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом.

    Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает.

    Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет.


    2. Типы изображений

    Изображение характеризуется максимальным числом цветов, которые могут быть в нем использованы, то есть иметь различную глубину цвета. Существуют типы изображений с различной глубиной цвета - черно-белые штриховые, в оттенках серого, с индексированным цветом, полноцветные. Некоторые типы изображений имеют одинаковую глубину цвета, но различаются по цветовой модели. Тип изображения определяется при создании документа .

    Черно-белые штриховые изображения

    На каждый пиксел такого изображения отводится один бит информации. Одним битом кодируются два состояния, в данном случае это два цвета: черный и белый. Этот тип изображения называется Bitmap (Битовый). Глубина цвета такого изображения - один бит.

    Конвертирование тонального изображения в штриховое - процесс творческий, связанный с содержанием, смыслом и красотой изображения. Это дело художника, поручать его компьютеру бесполезно. Хотя и такая работа частично автоматизирована.

    Полутоновые изображения

    Пиксель полутонового изображения (grayscale) кодируется 8 битами (8 бит составляют 1 байт). Глубина цвета изображения данного типа составляет, таким образом, восемь бит, а каждый его пиксель может принимать 256 различных значений. Значения, принимаемые пикселями, называются серой шкалой. Серая шкала имеет 256 градаций серого цвета, каждая из которых характеризуется значением яркости в диапазоне от 0 (черный) до 255 (белый). Этого вполне достаточно, чтобы правильно отобразить черно-белое полутоновое изображение, например, черно-белую фотографию.

    В Photoshop 4.0 появилась поддержка изображений с 16-битными каналами, позволяющими увеличить количество передаваемых цветов или оттенков серого. Так, в режиме с 16-битными каналами полутоновое изображение может содержать не 256, а 65 536 оттенков серого. С другой стороны, размер файла с 16-битными каналами в два раза больше, чем с традиционными, 8-битными. Размер файла и место в оперативной памяти - дорогая плата за глубину цвета.

    Любое изображение можно превратить в полутоновое. Если исходный материал, например, цветная фотография, то она станет черно-белой.

    Индексированные цвета

    Первые цветные мониторы работали с ограниченной цветовой гаммой: сначала 16, затем 256 цветов. Они кодировались 4 битами (16 цветов) или 8 битами (256 цветов). Такие цвета называются индексированными (indexed color). Разумеется, 16 (и даже 256) цветами невозможно убедительно передать цветовую гамму фотоизображений.

    Применение индексированных цветов снизилось с распространением высококачественных мониторов, однако с ними работают до сих пор, например, Web-мастера. Кроме того, ограничение числа цветов можно использовать для получения интересных эффектов.

    Индексированные цвета кодируются обычно четырьмя или восемью битами в виде так называемых цветовых таблиц. Глубина индексированного цвета может составлять 2-8 бит. Например, графическая среда Windows 95 поддерживает цветовую таблицу из восьми бит на пиксель, она называется системной палитрой (system palette). В этой таблице цвета уже предопределены, как мелки в коробке пастели, и вам остается только использовать то, что есть в коробке, то есть в таблице.

    Полноцветные изображения

    К полноцветным (true color) относятся типы изображений с глубиной цвета не менее 24 бит, то есть каждый пиксель такого изображения кодируется как минимум 24 битами, что дает возможность отобразить не менее 16,7 миллиона оттенков. Поэтому иногда полноцветные типы изображение называют True Color (истинный цвет).

    Битовый объем каждого пикселя распределяется по цветовым составляющим: каждый цвет кодируется 8 битами. Цветовые составляющие в программе организуются в виде каналов, совмещенное отображение каналов и определяет цвет изображения.

    Полноцветные изображения являются многоканальными. К изображениям этого класса относятся RGB, CMYK, L*a*b и другие. Они отличаются по глубине цвета и по способу математического описания цветов, то есть по цветовой модели.


    3. Форматы файлов

    Формат (format) в определенной степени понятие бюрократическое, каждому приходилось заполнять всевозможные анкеты. Анкета - это и есть формат для организации данных, ее нудно заполнять, зато потом легко обрабатывать.

    Без формата информации не существует. Ее нельзя сохранить и передать. Соответствие форматов - это как разговор на одном языке. Форматов файлов очень много. Для каждого вида компьютерной деятельности существуют стандартные форматы, то есть самые удобные, или часто применяемые. Для текстов такими форматами является DOC, ТХТ, для полиграфической продукции - TIFF, Р1СТ, для графики в Интернет - GIF, JPEC и т. д.

    Для того чтобы программы понимали файлы различных форматов, существуют конверторы. Они переводят информацию из собственного формата файла в формат, понятный данной программе. Чем больше конверторов есть в программе, тем больше различных форматов файлов она может распознать .


    4. Цвет и его модели

    Мир, окружающий человека, - это океан цвета. Цвет имеет не только информационную, но и эмоциональную составляющую. Для многих отраслей производства, в том числе для полиграфии и компьютерных технологий, необходимы объективные способы описания и обработки цвета.

    Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Если смешать желтую и голубую краски, получится зеленая. Из двух цветов получен третий. Путем смешивания из небольшого числа базовых или основных цветов можно получить остальные цвета, называемые составными. Таким образом, цвет можно математически описать как соотношение базовых компонентов (создать модель цвета). Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью.

    Объект, имеющий цвет, может излучать свет или поглощать его. В первом и во втором случае цвет объекта описывается по-разному, то есть для его описания применяются разные модели цвета.

    Параметры цвета могут быть выражены с помощью многих цветовых моделей. Наиболее часто в графических пакетах используются три цветовые модели: RGB, CMYK, HSB .

    Урок "Компьютерная графика"

    Компьютерная графика - раздел информатики, пред метом которого является создание и обработка на компьютере с гра­фических изображений (рисунков, чертежей, фотографий и пр.)

    История компьютерной графики

    О компьютерной графике заговорили после опытов Джей У. Форрестера (инженер компьютерной лаборатории Массачусетского технологического института) в 1951 году.

    К предшественникам компьютерных рисунков можно отнести первые не­затейливые картинки из точек и букв, получаемые на телетайпах телеграфа, а позже - на печатающих устройствах, подключенных к ЭВМ.

    Итак, в начале были точки и простые линии. Этот набор стремительно обогащался. 1970-е годы стали временем широкого использования машинной графики. Одно из важнейших отличий современных ПК состоит в воз­можности вывода на экран графического изображения.

    В доступный для многих инструмент компьютерная графика превратилась благодаря Айвену Сазерленду, автору одной из первых графических систем.

    Направления компьютерной графики

    Направление

    Назначение

    Программное обеспечение

    Научная

    Визуализация объектов научных исследований, графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов.

    Деловая

    Создание иллюстраций, используемых составления иллюстрации статистических отчетов и пр.

    Используется в работе учреждений.

    Электронные таблицы

    Конструкторская

    Создание плоских и трехмерных изображений.

    Используется в работе инженеров-конструкторов.

    Системы автоматизированного проектирования (САПР)

    Иллюстративная

    Создание произвольных рисунков и чертежей.

    Графические редакторы

    Создание реалистических изображений. Используется для создания рекламных роликов, мультфильмов, компьютерных игр, видеоуроков, видеопрезентаций и пр.

    Графические редакторы (со сложным математическим аппаратом)

    Компьютерная анимация

    Создание движущихся изображений на экране монитора. Слово «анимация» означает «оживление».

    Аналоговый и дискретный способы представления

    ГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ

    Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вкусовых, обонятельных ).

    Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий, …)

    При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно .

    При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно .

    Все органы чувств человека имеют дело с аналоговыми сигналами.

    Любая информация, используемая в технических системах, также начинается и заканчивается аналоговым сигналом.

    Таким образом, представление об аналоговом способе следует рассматривать в качестве необходимой предпосылки перехода к цифровым технологиям.

    Растровая графика

    Качество кодирования изображения зависит от :

    Размера точки - чем меньше её размер, тем больше количество точек в изображении

    - количества цветов (палитры) - чем большее количество возможных состояний точки, тем качественнее изображение

    Достоинства растровой графики:

    1. Каждому видеопикселю можно придать любой из миллионов цветовых оттенков. Если размеры пикселей приближаются к размерам видеопикселей, то растровое изображение выглядит не хуже фотографии. Таким образом, растровая графика эффективно представляет изображения фотографического качества.

    2. Компьютер легко управляет устройствами вывода, которые используют точки для представления отдельных пикселей. Поэтому растровые изображения могут быть легко распечатаны на принтере.

    Недостатки растровой графики:

    1. В файле растрового изображения запоминается информация о цвете каждого видеопикселя в виде комбинации битов. Простые растровые картинки занимают небольшой объем памяти (несколько десятков или сотен килобайтов). Изображения фотографического качества часто требуют нескольких мегабайтов. Таким образом, для хранения растровых изображений требуется большой объем памяти.

    Самым простым решением проблемы хранения растровых изображений является увеличение емкости запоминающих устройств компьютера. Современные жесткие и оптические диски предоставляют значительные объемы памяти для данных. Оборотной стороной этого решения является стоимость, хотя цены на эти запоминающие устройства в последнее время заметно снижаются.

    Другой способ решения проблемы заключается в сжатии графических файлов, т. е. использовании программ, уменьшающих размеры файлов растровой графики за счет изменения способа организации данных. Существует несколько методов сжатия графических данных.

    2. Проблемой растровых файлов является масштабирование:

    - при существенном увеличении изображения появляется зернистость, ступенчатость

    При большом уменьшении существенно снижается количество точек, поэтому исчезают наиболее мелкие детали, происходит потеря четкости

    Для обработки растровых файлов используют редакторы: MS Paint, Adobe Photoshop

    Векторная графика

    Векторные изображения формируются из объектов (точка, линия, окружность, прямоугольник...), которые хранятся в памяти компьютера в виде графических примитивов и описывающих их математических формул.

    Достоинства векторной графики

    1. При кодировании векторного изображения хранится не само изображение объекта, а координаты точек, используя которые программа каждый раз воссоздает изображение заново.

    Поэтому объем памяти векторных изображений очень мал по сравнению с растровой графикой .

    RECTANGLE 1, 1, 200, 200, Red, Green

    Несжатое растровое описание квадрата требует примерно в 1333 раза большей памяти, чем векторное.

    2. Векторные изображения могут быть легко масштабированы без потери качества.

    Это возможно, так как масштабирование изображений производится с помощью простых математических операций (умножения параметров графических примитивов на коэффициент масштабирования).

    Недостатки векторной графики

    1. Векторная графика не предназначена для создания изображений фотографического качества. В векторном формате изображение всегда будет выглядеть, как рисунок.

    В последних версиях векторных программ внедряется все больше элементов "живописности" (падающие тени, прозрачности и другие эффекты, ранее свойственные исключительно программам точечной графики).

    2. Векторные изображения иногда не выводятся на печать или выглядят на бумаге не так, как хотелось бы.

    Это происходит оттого, что векторные изображения описываются тысячами команд.

    В процессе печати эти команды передаются принтеру, а он может, не распознав какой-либо примитив, заменить его другим – похожим, понятным принтеру.

    Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами: CorelDRAW, Adobe Illustrator.

    Фрактальная графика

    Изображение строится по формуле. В памяти компьютера хранится не изображение, а только формула, с помощью которой можно получить бесконечное количество различных изображений.

    Фракталы - это геометрические объекты с удивительными свойствами: любая часть фрактала содержит его уменьшенное изображение.

    То есть, сколько фрактал не увеличивай, из любой его части на вас будет смотреть его уменьшенная копия.